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Exploration of the Mathematics of Historical and Modern Encryption Methods 

Since I was a kid, I always wanted to be a spy. Not like James Bond, but more like Q, 

who gave James Bond all the tech he needed to do his sleuthing and secret work. As I got older I 

began to develop an interest in programming and creating software. I also developed an interest 

in cryptography and secret codes. I wanted to learn more about how cryptography worked and its 

uses in software, since it is an essential part of data security. I learned that, over the course of my 

research, that cryptographic encoders and decoders can be built using simple mathematics, such 

as addition, modular arithmetic, and exponents, As such, in this mathematical exploration, I will 

be considering the world of cryptography and looking at different ways of encrypting and 

decrypting data.  

My goal for this exploration is to explore the math of ( different types of ciphers: Caesar 

Cipher and Multiplicative Cipher, which both share aspects with RSA encryption, a modern use 

of encryption. As I go through this exploration, I will be looking at not only the math behind 

these ciphers and encryption systems, but also the logic behind finding certain numbers used in 

encryption. I will also be explaining a lot of the math behind each of the ciphers as well. Finally, 

I will be looking at ways of breaking these ciphers using statistics and factorization.  

 

The Basics of Encryption and Caesar Cipher 

Encryption is just the conversion of data from one form to another. This allows the data 

to be kept secret during transmission and holding. Encryption is best explained in an example. 

Let’s take three people: Alice, Bob, and Eve. Alice wants to send a message to Bob without Eve 

knowing. Using encryption, Alice can send the message to Bob without Eve being able to 

understand it. Basic encryption consists of 3 parts: the plaintext, the cipher text, and the key. The 

plaintext is simply the message that Alice wants Bob to know. For example, the message could 

be: 

 

the quick brown fox jumped over the lazy dog 

 

It is common for the plaintext to be written in lowercase while the ciphertext to be written in 

Upper case to distinguish them. The key is the next part. The key is what converts the data from 

plaintext to ciphertext and back. In a simple shift cipher or Caesar Cipher, the key is simply the 

number of letters you want to shift the plaintext over by to get the cipher text. You do this by 

assigning each letter a numerical value. This is usually the order each letter appears in (i.e. A =1, 

B = 2, etc.). You then add the key value to the number and use the original placement to 

determine the ciphertext letter. In this example, Alice decides to shift the plaintext by three 

letters. We can write this out in the following way: 

 

 

𝐾𝑒𝑦: 𝑋 + 3 (𝑚𝑜𝑑 26) 
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𝐾𝑒𝑦: 𝑋 + 𝐾 (𝑚𝑜𝑑 𝑚) 

 

In the second example, it is a general expression of a key, where X represents the letter or 

plaintext number, K represents the shift and m represents the number of letters in the alphabet. 

The (mod 26) part at the end of the key stands for Modulo. This is an operator that acts as a 

wraparound for the key. If you were to shift the letter Z the same way as the other letters, you 

would get an out of range value, since there are only 26 letters in the Anglo-Saxon Alphabet. 

However, if you were to divide 29 by 26, you would get 1 with a remainder of 3. The modulo 

returns the remainder value, which will be used when determining the ciphertext. In this 

exploration, the symbol ≡ will be used to represent the remainder. 

 

29 ÷ 26 = 1 𝑅 3 

29 ÷  26 ≡ 3 

 

In this case, z would be enciphered to C, since C is the 3rd letter in the alphabet. The final part is 

the ciphertext. This is simply the text that has been changed to make the data secured. In the 

shift/Caesar cipher, this is simply the product of each conversion of the original message to the 

shifted message. In this case, the message would be  

 

WKH TXLFN EURZQ IRA MXPSHG RYHU WKH ODCB GRJ 

 

To the naked eye, this would seem indecipherable, incoherent, and incorrect, but, it is a simple 

message encrypted.   

 

Breaking it Down 

While encryption helps keep messages protected, it doesn’t mean it always works. 

Keeping with the example above, let’s say Eve somehow gets her hands on the message. While it 

is encrypted, there are a few ways that she can try and crack it. For a small message like this, the 

first way would be a brute force crack. This is when Eve try’s every possible cipher to get a 

coherent message. If she understood that this was a shift/Caesar cipher, she would most likely be 

able to try all the possible ciphers, since there are only 25 possible options. Eventually she would 

be able to crack it. However, as the messages get bigger the brute force approach gets 

complicated and long. A longer message could have issues which may trick Eve, such as 

improper grammar or mathematical errors in the shift. It also becomes time consuming as more 

letters need to be checked for a correct shift. Another way would be to use a histogram and a 

statistical analysis of letter frequency, and compare it to theoretical probabilities of letter 

frequency. To show how this would work, we will use a large quote from Cory Doctorow’s Little 

Brother:  

"Governments are instituted among men, deriving their just powers from the 

consent of the governed, that whenever any form of government becomes destructive of 
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these ends, it is the right of the people to alter or abolish it, and to institute new 

government, laying its foundation on such principles, and organizing its powers in such 

form, as to them shall seem most likely to effect their safety and happiness." I 

remembered it word for word. 

 

The encrypted text for a cipher shift of 3 would be: 

 

"JRYHUQPHQWV DUH LQVWLWXWHG DPRQJ PHQ, GHULYLQJ 

WKHLU MXVW SRZHUV IURP WKH FRQVHQW RI WKH JRYHUQHG, WKDW 

ZKHQHYHU DQB IRUP RI JRYHUQPHQW EHFRPHV GHVWUXFWLYH RI 

WKHVH HQGV, LW LV WKH ULJKW RI WKH SHRSOH WR DOWHU RU 

DEROLVK LW, DQG WR LQVWLWXWH QHZ JRYHUQPHQW, ODBLQJ LWV 

IRXQGDWLRQ RQ VXFK SULQFLSOHV, DQG RUJDQLCLQJ LWV SRZHUV LQ 

VXFK IRUP, DV WR WKHP VKDOO VHHP PRVW OLNHOB WR HIIHFW WKHLU 

VDIHWB DQG KDSSLQHVV." L UHPHPEHUHG LW ZRUG IRU ZRUG. 

 

For this method, Eve would take a tally of the encrypted letters and how many times they appear. 

Rather than just writing down the frequency, it is better to write the relative frequency in order to 

compare theoretical data. Below, the table shows them sorted.  

 

Table 1 

Letter Histogram 

Letter (Ciphertext) Occurrence Relative Frequency 

(Occurrence/Character 

Count) 

H 49 14% 

W 38 11% 

R 31 9% 

Q 30 8% 

L 27 8% 

U 25 7% 

V 25 7% 

D 16 4% 

K 16 4% 

P 14 4% 

G 12 3% 

I 12 3% 

J 10 3% 

O 9 3% 

S 8 3% 

F 7 2% 

X 7 2% 
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Letter (Ciphertext) Occurrence Relative Frequency 

(Occurrence/Character 

Count) 

Y 7 2% 

Z 6 2% 

B 4 1% 

E 3 1% 

C 1 0% 

M 1 0% 

N 1 0% 

A 0 0% 

T 0 0% 

Total 360 100 % 

 

 
 

In order to determine the shift, we can apply theoretical data over top of the existing data. This 

should show us a similar shape, excepted shifted over some length. The length to which it needs 

to be shifted will give us the shift factor, and therefore the key to decrypt it. Below we can see 

the data above, as well as a few test fits to see which best matches the data.  
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Above are 2 graphs. The first shows the relative frequency of the ciphertext, the theoretical 

frequency of each letter, and 3 letters shifted, which I determined to be the best fit for the data 

based on the difference between the highest theoretical frequency and the largest relative 

frequency. To prove this is the best fit, I created a scatter plot with relative frequency on the x-
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axis and the theoretical, 3 Shift frequency on the y-axis. From this we found a general trendline 

and the Pearson coefficient value: 

 

Table 2 

Calculation Table of Pearson r coefficient  

Data Actual 

Value (X) 

Theoretic

al Value 

(Y) 

x (X – 

mean) 

y (Y – 

mean) 

x2 y2 xy 

 0% 4.25% -4% -3.700% 0.15% 0.14% 0.14% 

 1.11% 12.70% -2.74% -1.876% 0.08% 0.04% 0.05% 

 0.28% 2.23% -3.57% -3.776% 0.13% 0.14% 0.13% 

 4.44% 2.02% 0.59% 4.317% 0.00% 0.19% 0.03% 

 0.83% 6.09% -3.02% -2.358% 0.09% 0.06% 0.07% 

 1.94% 6.97% -1.91% -1.068% 0.04% 0.01% 0.02% 

 3.33% 0.15% -0.52% 0.403% 0.00% 0.00% 0.00% 

 13.61% 0.77% 9.76% 8.852% 0.95% 0.78% 0.86% 

 3.33% 4.03% -0.52% -1.622% 0.00% 0.03% 0.01% 

 2.78% 2.41% -1.07% -1.835% 0.01% 0.03% 0.02% 

 4.44% 6.75% 0.59% 2.244% 0.00% 0.05% 0.01% 

 7.50% 7.51% 3.65% 3.116% 0.13% 0.10% 0.11% 

 0.28% 1.93% -3.57% -3.697% 0.13% 0.14% 0.13% 

 0.28% 0.10% -3.57% -3.078% 0.13% 0.09% 0.11% 

 2.50% 5.99% -1.35% 0.175% 0.02% 0.00% 0.00% 

 3.89% 6.33% 0.04% -1.444% 0.00% 0.02% 0.00% 

 8.33% 9.06% 4.48% 2.899% 0.20% 0.08% 0.13% 

 8.61% 2.76% 4.76% 3.657% 0.23% 0.13% 0.17% 

 2.50% 0.98% -1.35% -1.921% 0.02% 0.04% 0.03% 

 0% 2.36% -4% -3.755% 0.15% 0.14% 0.14% 

 6.94% 4.25% 3.09% 2.137% 0.10% 0.05% 0.07% 

 6.94% 12.70% 3.09% 2.477% 0.10% 0.06% 0.08% 

 10.56% 2.23% 6.71% 5.206% 0.45% 0.27% 0.35% 

 1.94% 2.02% -1.91% -1.092% 0.04% 0.01% 0.02% 

 1.94% 6.09% -1.91% -2.872% 0.04% 0.08% 0.05% 

 1.67% 6.97% -2.18% -1.490% 0.05% 0.02% 0.03% 

Total   0% 0% 3.22% 2.70% 2.78% 

Mean 3.85% 3.85% 0% 0%    

 

𝑟 =  
∑ 𝑥𝑦

√∑ 𝑥2 ∑ 𝑦2
 

=
2.78%

√3.22% × 2.70%
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=
2.78%

√8.69%
 

=
2.78%

2.95%
 

= 0.9428 

 

Based on the Pearson coefficient value, we see that there is a strong correlation between our 

experimental relative frequency and our theoretical 3 shift frequency. As such, we can determine 

that the 3 shift cipher is most likely the cipher we can use to decrypt the message.  

Another way is using a word histogram. Similarly, a word histogram would allow you to 

do the same thing as a letter histogram. The most common word in the English language is “the”. 

In the encrypted message, the letter combination “WKH” appears twice, more than any other 

letter combination. If we assume that this letter combination is “the”, then W would convert to T, 

K would convert to H, and H would convert to E. These are all 3-letter shifts, which indicates 

that not only is the word “the”, but the message is encrypted using a 3-letter shift. The best way 

around this would be to group the letters into smaller packs. This would make it hard to decrypt a 

message based on a word histogram. Unlike the brute force attack, Histograms work well when 

there is a large message, as this gives you more data to work with. While a Caesar cipher is a 

good way of protecting data, this is a weak cipher due to the limited number of possible 

combinations and the simple replacement of letters rather than rearrangement or replacement of 

alphanumeric symbols with other symbols. However, we can easily increase the security through 

the use of Multiplicative ciphers. 

 

Increasing Security: Making and Breaking Multiplicative Ciphers 

A simple shift/substitution cipher can easily be broken with simple probability or trial and 

error. However, what if we multiplied instead of added to the value representing the letter? This 

begins with multiplicative ciphers. Like Caesar ciphers, they are also based in the same key, 

where letters are assigned numbers, similarly to that based of their position.  

Lett

er 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z  

Num

ber 

1 2 3 4 5 6 7 8 9 1

0 

1

1 

1

2 

1

3 

1

4 

1

5 

1

6 

1

7 

1

8 

1

9 

2

0 

2

1 

2

2 

2

3 

2

4 

2

5 

2

6 

 

Rather than simply adding a key value to their number property, we multiply it by a number. 

However, there is an issue with the number of keys we can have. To start, we are limited to 26, 

since there are only 26 letters, so key 27 is the same as key 1. Another thing we must consider is 

that if we were to multiply by 2, we would get letters being represented by the same number. For 

example, both ‘B’ and ‘O’ would be represented by the number 4 if we had a key of 2. This 

eliminates half the keys that are a multiple of 2.  If we were to multiply by 26, we would get a 

bad key as it would be the same as multiplying by 0, which would represent every letter the 
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same. Finally, 13 is bad since each letter would be represented by a possible 1 of 2 letters, as 13 

wraps around 26 in 2 possible ways. So, we are limited to 12 keys when using a multiplicative 

cipher. Now let’s see this in action. For this sample, we will use the same excerpt from the 

Caesar cipher: 

 

"Governments are instituted among men, deriving their just powers from the 

consent of the governed, that whenever any form of government becomes destructive of 

these ends, it is the right of the people to alter or abolish it, and to institute new 

government, laying its foundation on such principles, and organizing its powers in such 

form, as to them shall seem most likely to effect their safety and happiness." I 

remembered it word for word. 

 

It is also important to note the use of prime numbers in multiplicative ciphers. The use of prime 

numbers helps increase security for breaking into these ciphers. For this example, we will use 7 

as our key, and encrypt our alphabet as such: 

 

Plai

n 

Text 

a b c d e f g h i j k l m n o p q r s t u v w x y z  

Nu

mbe

r 

1 2 3 4 5 6 7 8 9 1

0 

1

1 

1

2 

1

3 

1

4 

1

5 

1

6 

1

7 

1

8 

1

9 

2

0 

2

1 

2

2 

2

3 

2

4 

2

5 

2

6 

Key 

7 

(mo

d 

26) 

7 1

4 

2

1 

2 9 1

6 

2

3 

4 1

1 

1

8 

2

5 

6 1

3 

2

0 

1 8 1

5 

2

2 

3 1

0 

1

7 

2

4 

5 1

2 

1

9 

2

6 

Cip

her 

Text 

G N U B I P W D K R Y F M T A H O V C J Q X E L S Z 

 

This means that our encrypted message will appear as such (note that the punctuation is 

missing): 

 

WAXIVTMITJC GVI KTCJKJQJIB GMATW MIT BIVKXKTW JDIKV RQCJ 

HAEIVC PVAM JDI UATCITJ AP JDI WAXIVTIB JDGJ EDITIXIV GTS PAVM AP 

WAXIVTMITJ NIUAMIC BICJVQUJKXI AP JDICI ITBC KJ KC JDI VKWDJ AP JDI 

HIAHFI JA GFJIV AV GNAFKCD KJ GTB JA KTCJKJQJI TIE WAXIVTMITJ 

FGSKTW KJC PAQTBGJKAT AT CQUD HVKTUKHFIC GTB AVWGTKZKTW KJC 

HAEIVC KT CQUD PAVM GC JA JDIM CDGFF CIIM MACJ FKYIFS JA IPPIUJ 

JDIKV CGPIJS GTB DGHHKTICC K VIMIMNIVIB KJ EAVB PAV EAVB 
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While we may be losing keys, going from 25 possible in the Caesar cipher to just 12 in a 

multiplicative cipher, we gain security as the numbers are not encrypted in sequential order. Let’s 

look at a histogram of the message above: 

 

Table 3 

Letter Histogram  

Letter (Ciphertext) Occurrence Relative Frequency 

A 31 8.64% 

B 12 3.34% 

C 25 6.96% 

D 16 4.46% 

E 6 1.67% 

F 9 2.51% 

G 16 4.46% 

H 8 2.23% 

I 49 13.65% 

J 38 10.58% 

K 27 7.52% 

L 0 0.00% 

M 14 3.90% 

N 3 0.84% 

O 0 0.00% 

P 12 3.34% 

Q 7 1.95% 

R 1 0.28% 

S 4 1.11% 

T 30 8.36% 

U 7 1.95% 

V 25 6.96% 

W 10 2.79% 

X 7 1.95% 

Y 1 0.28% 

Z 1 0.28% 

Total 359 100% 
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Outlined above are 2 graphs. The first shows the frequency relative to the total character 

count. It also shows the theoretical frequency in their plaintext, as well as a 7 mod 26 shift. 

Based on relative frequency, I found this by matching the most frequent with the theoretical most 

frequent, the second most together and so on. Eventually, I formed a pattern of a multiplication 

factor of 7, thus giving me the key. The second graph shows the correlation between the actual 

and the theoretical and actual frequencies. As you can see, the graph is identical to the Caesar 

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Histogram of Letter Frequency

Relative Frequency Theoretical Frequency Theoretical Frequency (7 shift mod 26)

y = 0.8631x + 0.0053

R² = 0.8862

R = 0.9428

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

0.00% 2.00% 4.00% 6.00% 8.00% 10.00% 12.00% 14.00% 16.00%

T
h
eo

re
ti

ca
l 

F
re

q
u
en

cy
 -

7
 S

h
if

t

Relative Frequencies

Scatter Plot of Theoretical and Actual Frequencies



EXPLORATION OF ENCRYPTION 12 

cipher graph. This is to be expected since the phrase used was the same, and the shift resulted in 

the right key. This also means there is a strong correlation between the frequencies, giving me a 

clear indication as to what the key is. There is another way to find the key without going through 

the long process of determining correlation. From this histogram, if we assume ‘I’, the letter with 

the highest frequency, is the cipher text of the letter ‘e’, and ‘G’, the letter with the second 

highest frequency, is the cipher text of the letter ‘a’, then we can try and find the key using the 

greatest common divisor. Let’s assign I the number 9, which is its position in the alphabet and 

give G the number 7 based on its position. Based on these numbers, we figure can figure out the 

GCD using Euler’s algorithm. Euler’s algorithm states that the GDC of two numbers is equal to 

the GCD of the lesser of the two numbers and the remainder between the original two numbers. 

To find the GCD, you first start by dividing the larger number by the smaller number. If it returns 

a remainder, you then divide the smaller of the original numbers by the remainder. You keep 

doing this until you get no remainder. For this example, you can see this algorithm in work down 

below: 

9 = 7 ∗ 1 + 2 

2 = 2 ∗ 1 + 0 

This shows that the greatest common divisor between 9 and 7 is 1. However, if the key 

was 1, the message would be the same in plaintext and ciphertext. As such we need to look at 

other options. Since encryption in our alphabet has a wraparound at 26, we can try and find a 

common divisor with 9 + 26, which is 35. If we try and find the greatest common divisor now, 

we will get a new number: 

35 = 7 ∗ 5 + 0 

 Since 7 is greater then 5, we can determine the greatest common divisor between 7 and 

35 is 7, and since 35 mod 26 is 9, which represents ‘I’. This means our key is 7, and we can 

decrypt each letter by adding 26 to its positional number until it reaches a multiple of 7, and then 

divide that number by 7 to get the plaintext positional number, which will in turn give us a letter 

in plaintext. The brute force attack works just as well for Caesar Cipher. Since letters aren’t 

encrypted in sequential order, it is harder to find the key. However, since there are less possible 

keys, it evens out. Finally, you can also use a word histogram like the Caesar cipher, but this can 

also be easily reduced by simply grouping the letters together. 

 

Importance of Basic Ciphers 

The idea behind these ciphers is not for practical use. This is most likely attributed to the 

lack of advancements in technology. At the time of the creation of these ciphers, we see that the 

technology available at the time was not capable of brute forcing, or using histograms to 

determine letter frequency. However, as technology advances, the ability to decrypt ciphers has 

become more efficient. As such, in todays time these ciphers can be easily decrypted through 

methods such as brute force and histograms. The importance of these ciphers not only show the 

potential for other ciphers, but are the building blocks of bigger, more secure, and more practical 



EXPLORATION OF ENCRYPTION 13 

ciphers such as enigma, one-time pads, and RSA encryption, which have been used in 

communications, security, and privacy. 

 

Modern Applications of Encryption: RSA Encryption and the Public Key System 

RSA is an example of a public key cipher, which uses a public key and a private key to 

encrypt and decrypt your data. It is also a type of exponential cipher, where the plaintext number 

is raised to some power, and is wrapped around some integer, usually larger than the number of 

letters in the alphabet for which the cipher is being used. RSA uses a compound modulo, which 

is found based on a set of numbers. It all starts with two prime numbers, p and q. These numbers 

are large, commonly 300 or more digits long. For this example, we will use 2 small, 2-digit 

prime numbers: 

𝑝 = 37 

𝑞 = 17 

We then use these numbers to make n, the modulo or wraparound for this encryption. 

𝑛 = 𝑝 × 𝑞 

= 37 × 17 

= 629 

We also use p and q to make Ф(n), which represents Euler’s totient function. This function finds 

the number of integers for which they are relatively prime to n, or in other words share a GCD of 

1. Since we know n is a prime number and is the product of p and q, we can use the following 

function to find Ф(n). 

Ф(𝑛) = (𝑝 − 1)(𝑞 − 1) 

Inputting p and q give us the following: 

Ф = (𝑝 − 1)(𝑞 − 1) 

= (37 − 1)(17 − 1) 

= (36)(16) 

= 576 

Ф(n) is used to find the public key (represented by d) and private key (represented by e). We now 

have n and Ф(n). With this we can now create the private key. The private key is just a number 

which needs to be prime relative to Ф, or otherwise have a GCD of 1 with Ф(n). We can use 

prime factorization to find a prime that meets this criterion: 

𝟓𝟕𝟔 = 𝟐𝟔 × 𝟑𝟐 

Since 576 when prime factorized has prime factors of 2 and 3, we can multiply any number of 

prime numbers other than 2 and 3 to find a private key. For this example, we will use 5 as our 

private key. Now it is time to find a public key. This key must be found such that the public key 

is the inverse multiple of the private key mod Ф.  

𝑑 = �̅� (𝑚𝑜𝑑 Ф(n)) 

𝑒 × 𝑑 ≡ 1 (𝑚𝑜𝑑 Ф(n))  
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To find this, we simply multiply d and e and divide by Ф(n) such that it has a remainder of 1. 

This is where it becomes difficult, as we need some logic operators from predicate calculus. We 

need to create a formula that checks all the values between 0 and Ф(n) -1 to see if any share a 

GCD of 1 with e. We will set Kx to represent “x is a key”, and x is a placeholder in this. As such, 

we can create the following formula: 

∃𝐾 (∀(0, Ф(𝑛) − 1)(𝑒 ∗ 𝑑 ≡ 1 𝑚𝑜𝑑 Ф(𝑛) ⊃ 𝐾𝑑)) 

The formula above translates to “for all values in range of 0 and Ф(n) -1, if e times d mod Ф(n) 

is 1, then d is a possible key.” In this example, the equation would return the value 461. Now we 

have n, Ф(n), e, and d, we can begin our encryption. To begin you need to publish the public key 

(e, n). You can now create your private key (d, n). To send a message, you first need to assign a 

value to each letter. Let us use the phrase “Heroes Never Die”. You then have to raise the number 

to the power of your public key, mod n. This will return another value, which is the cipher text 

number.  

 

Letters H E R O S N E V E R D I E 

Plaintext 

Number  

8 5 18 15 19 14 5 22 5 18 4 9 5 

Ciphertext 

Number 

(raised to 

the power 

of e) 

60 609 52 172 355 29 609 235 609 52 395 552 609 

  

So, the final message is: 

 

60 609 52 172 355 29 609 235 609 52 395 552 609 

 

To decrypt it, you use your private key (d, n). You must raise your ciphertext numbers to 

the power of d mod n.  

Breaking RSA encryption is harder than Multiplicative ciphers and Caesar ciphers. To 

break this we need to use Shor’s algorithm, which involves some quantum computing. To do this 

you need to find the period of the function f(x) = mx mod N, where m is a random integer less 

then N, N is the number you are trying to factor (in this case n from above). You then use the 

quantum computer to create a quantum superposition and perform the quantum Fourier 

transformation. As such, people are limited to breaking it without access to a quantum computer. 

In this IA we have talked about using histograms to help decrypt the messages. However, RSA 

renders this tactic useless with the private key. Since we know the public key, and only the 

private key can decrypt it, a histogram would give us no new or useful information, thus not 

working. While RSA seems strong, there is one issue: it is a one-way system. Let’s say Alice 

wanted to send a message to Bob, she would encrypt the message with Bob’s public key and 
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send it to him for him to decrypt it using his private key. However, if he wanted to respond to 

that message, he can’t just encrypt using his private key because anyone can just decrypt it using 

his public key. The simple solution is for Alice to create a key of her own and publish it. While 

not inconvenient, it just means that to encrypt they would have to have 2 sets of keys. It is also 

common to mix AES encryption with RSA which reduces the system to 1 key. In this hybrid 

system, Alice would create an AES key, and encrypt it using Bob’s public key. She would then 

send this key to Bob, who would decrypt the message to get Alice’s AES key. Finally, they 

would encrypt and decrypt their messages using the AES key. While RSA is secure and more 

complex than other systems, it is important to note that any encryption becomes weak over time. 

With many threats to privacy and security at home and abroad, it’s important to note that 

government agencies, like the NSA, have tried to include weaknesses in mainstream encryption 

systems for them to access secure data. As such we dive into the realm of ethics and morality 

when debating the major issue of cryptography today.  

 

Conclusion and Reflection 

With our lives being heavily oriented in the digital realm, it is important that we 

understand what encryption is and how it works. It protects all our data and helps keep us safe 

from identity theft and espionage. More importantly, it gives us privacy, allowing us to not only 

be expressive with less repercussions, but help us protect our rights as citizens in a time where 

these rights are under attack from various angles. We see this in the FBI vs Apple issue, where 

the FBI has asked Apple to make a code to unlock the iPhone of a terrorist. Apple declined as 

this code could then be used to open other iPhones, which will then weaken the security for 

which Apple prides themselves on. If it was not for encryption, these issues would be less 

common, as many authority figures could easily unlock them.  

As I was writing my IA, I got to see a whole new side of encryption. I always loved the 

secrets and the mysteries behind it. I also loved the software and computer side of it. However, I 

never had the opportunity to really delve in to the math part of encryption. I always knew there 

was some aspect of math behind it, but I always believed it was only possible through calculus 

and university level mathematics. Yet as I explored these encryption systems, it amazed me how 

I was exploring these concepts that were vaguely familiar to me were so simple in mathematics. I 

also got to explore new areas of mathematics, such as statistical analysis and predicate calculus.  

The idea of using a correlation analysis to determine how likely that this shift is the cipher made 

me feel as though I was a spy out of James Bond.  

 The question now becomes “Where do I go from here?” As a software designer, data 

security is a big part of my job, but also is a responsibility as someone who is developing tools 

for the world. Being able to understand how encryption not only works on the software side, but 

also the mathematics side gives me a true edge when trying to secure data. I also learned 

throughout my IA that there are flaws in every encryption method, whether they be a limited 

amount of keys, sequential encryption or even government intervention. However, we can limit 

the influence of these issues in security by looking at new mathematical ways of encrypting data. 

Going forward, I will continue to learn more about encryption, and would like to specialize in 

encryption software as well as encryption in software. While I may not be the spy I always 

dreamed of, I still feel that I truly learned more about mathematical influence in our lives. 
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